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Preface

With the increasing maturity of Micro-Electro-Mechanical Systems
(MEMS) applications and the growing demand for large-scale inte-
grated circuit manufacturing, the tribological issues that arise during
manufacturing and application have garnered significant attention
from scholars both domestically and internationally in recent years.
The tribological research within these two domains falls under the
field of nanotribology. In terms of applications, scholars have primar-
ily focused on reducing friction and wear, whereas in manufacturing,
the interest lies in the scientific utilization and control of friction
and wear. A quintessential example is Chemical Mechanical Polish-
ing (CMP) in chip manufacturing, where the goal is to maximize
the material removal rate (MRR) while minimizing defects, which is
contrary to the objective in applications where minimizing material
wear is desired.

The rapid development of nanotribology research is closely tied
to advances in modern microscopic detection technologies, such as
Scanning Electron Microscopy (SEM), High-Resolution Transmis-
sion Electron Microscopy (HRTEM), X-ray Photoelectron Spec-
troscopy (XPS), Scanning Tunneling Microscopy (STM), Atomic
Force Microscopy (AFM), and Nanoindentation Instruments (NI).
Among these, the novel nanoindentation instruments, which integrate
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vi Molecular Dynamics for Tribology

AFM capabilities, not only facilitate nanoindentation tests but also
enable nano-scratch tests, yielding precise measurements of mechan-
ical behaviors at the nanoscale or microscale, such as indentation
hardness, elastic modulus, yield strength, and fracture toughness.
Some advanced nanoindentation devices can also conduct tests on
micro/nano-scale materials, such as compression, tension, fracture,
fatigue, friction, and wear, significantly advancing the field of nan-
otribology. Theoretically, the development of molecular simulation
techniques, particularly molecular dynamics simulation software, has
undoubtedly provided a catalyst for nanotribology research. These
simulations can overcome the limitations of real nanoscale experi-
ments by using large-scale parallel computing to simulate nanoscale
friction and wear processes. The collaboration between molecular sim-
ulation theory and modern microscopic detection technologies has
extended our understanding to the atomic and molecular levels, mak-
ing cross-scale research truly feasible.

Like traditional tribology, nanotribology involves friction, wear,
and lubrication and is an interdisciplinary field related to mathe-
matics, physics, chemistry, mechanics, mechanical engineering, crys-
tallography, and materials science. This book focuses on a highly
specialized area within this broad field, namely, the use of molecular
dynamics simulation software LAMMPS to simulate the nanoscale
wear processes of various materials, aiming to derive general prin-
ciples that could lay a foundation for practical applications in this
domain.

Chapter 1 provides a brief overview of the development and appli-
cation value of molecular dynamics. Chapter 2 outlines the princi-
ples, potential functions, and simulation tools of molecular dynamics.
Chapter 3 begins with the theory and experiments of nanoinden-
tation, followed by a discussion of the regularities observed in the
nanoindentation of single-crystal copper and single-crystal silicon
using molecular dynamics simulation. The final section of this chap-
ter discusses the uniaxial tensile behavior of single-crystal nanowires,
proposing the idea that material scale significantly influences mate-
rial properties. Chapter 4 systematically explores the simulated
experiments and findings on the nanoscale two-body and three-body
abrasive wear of single-crystal copper under air lubrication, followed
by a discussion on the nanoscale abrasive wear of single-crystal sili-
con. It highlights that one of the key differences between nanoscale
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Preface vii

and macroscopic abrasive wear is the need to account for the elas-
tic recovery of the worn surface, leading to an improved criterion
for distinguishing sliding and rolling of ellipsoidal abrasives at the
nanoscale. Chapter 5 analyzes the behavior of single-crystal cop-
per under nanoindentation, two-body, and three-body abrasive wear
in the presence of a water film, extending the criteria for abrasive
rolling and sliding to conditions with water lubrication. The pres-
ence of a water film reduces the friction coefficient and affects the
material removal rate. Chapter 6 directly addresses the CMP pro-
cess, systematically discussing the nanoindentation and wear behav-
ior of single-crystal silicon surfaces covered with an amorphous silica
film and analyzing the material removal mechanisms in the presence
of a water film. It also explores the wear process using non-rigid
abrasives, finding that non-rigid abrasives result in higher material
removal efficiency and better surface quality of single-crystal silicon,
with no defects in the substrate. In Chapter 7, the author system-
atically studies the deformation behavior of nanocrystalline copper
using molecular dynamics and, combined with phase field modeling,
constructs a more realistic polycrystalline model. This model quanti-
tatively analyzes the movement of grain boundaries and the evolution
of twinning, providing theoretical support for the rational design of
crystal structures in the future.

This book is a continuation of my previous monograph on
“Abrasive Wear” which has been published by China Science Pub-
lishing & Media LTD. The content presented here summarizes over
ten years of the author’s latest research. The main chapters and com-
putational data were contributed by my doctoral students, includ-
ing Dr. Jiapeng Sun (Associate Professor at Hohai University),
Dr. Junqgin Shi (Associate Professor at Northwestern Polytechnical
University), Dr. Juan Chen (Associate Professor at Taiyuan Univer-
sity of Science and Technology), Dr. Meng Zhang (Postdoctoral Fel-
low at the University of Tokyo), and outstanding master’s student
Mr. Xiangzheng Zhu (Mindray Bio-Medical Electronics Co., Ltd.).
I would like to extend my heartfelt thanks to all my students, espe-
cially Dr. Meng Zhang, who made significant contributions to the
typesetting, organization, and writing of Chapters 1, 2, and 7. I also
express my gratitude to the National Natural Science Foundation of
China for funding the publication of this book (Project No. 51375364:
Nanotribology of Three-Body Abrasive Wear in MEMS). I take this
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opportunity to thank my colleagues and other graduate students in
my research group for their strong support during my research work.
I am also grateful to all my friends, family, and relatives who have
supported me. This book was completed at Xiamen University Tan
Kah Kee College.

Errors in the book are inevitable, and I hope readers will under-
stand and provide constructive feedback to help the author make
corrections in future editions.
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